BLOOD PROFILE OF KACHCHHI CAMEL DURING EXERCISE # Y.D. Padheriya and K.N. Wadhwani Department of Livestock Production and Management, College of Veterinary Science and Animal Husbandry, Anand Agricultural University, Anand 388001, Gujarat, India #### **ABSTRACT** The study was conducted on five adult clinically healthy Kachchhi camels (B. wt 450-550 kg) to assess the effect of different payloads (L_1 - 1500kg, L_2 - 2000kg and L_3 - 2500kg), seasons (S_1 - summer, S_2 - hot humid and S_3 - winter) and work rest cycles (WR $_1$: 2h (W) - 1h (R) + 2h (W) - 1h (R) + 2h (W) - 1h (R) and WR $_2$: 1h (W) - 15 min (R) - 1h (W) - 15 min (R) - 1h (W) on the blood profile like glucose (mg/dl), urea (mg/dl), uric acid (mg/dl), creatinine (mg/dl), Hb (g%) and PCV (%). The per cent rise in blood glucose (mg/dl) level was 19.17 and 10.22 & 16.85 and 12.40 and 18.06 and 20.81 during S_2 , S_3 and S_4 season in WR $_1$ and WR $_2$, respectively during S_1 , S_2 and S_3 . The levels of Urea (mg/dl) were 58.01 and 59.40 & 45.73 and 51.63 & 50.11 and 50.67 in WR $_1$ and WR $_2$, respectively. The concentration of Uric Acid (mg/dl) was 0.25 and 0.29 & 0.34 and 0.34 & 0.39 and 0.32 in WR $_1$ and WR $_2$, respectively during S_3 , S_2 and S_3 . The creatinine (mg/dl) level before the start of work was 1.062 and at the end of work was 1.224. The value of Hb (g%) was 13.01 and 12.85 & 12.73 and 12.96 & 12.73 and 12.90 in WR $_1$ and WR $_2$, during S_1 , S_2 , and S_3 respectively. This indicated that camel can work comfortably under WR $_1$ as compared to WR $_2$. Key words: Blood profile, Kachchhi camel, payloads, seasons, work rest cycles Haematological and biochemical analysis of blood can often provide valuable information regarding health status of animal. It also plays an important role to determine the normal state from the state of stress, which can be nutritional, environmental or physical (Aderemi, 2004). It is well known that a variety of factors such as species, breed, sex, age, nutrition, illness, stress, exercise, transport and seasonal variations can affect the blood profile (Jain, 1998). Not much attention is paid to either stress and nor to the health of the animal though that may alter the physiological status of the camel (Kataria *et al.*, 2000). The present study aims to record the deviations in the blood chemistry of the Kachchhi camels and the impact of work rest cycle, payload and seasonal variation. #### Materials and Methods # **Experimental Animals and Management** This study was conducted on five adult clinically healthy Kachchhi camels of 450-550 kg body weight and 7-8 years of age during hot dry, hot humid and winter season. The camels, camel carts and drivers were hired from the local market. The camel was acclimatised for route of transport. The camels were given the feed as per the ICAR guideline (1985). #### **Duration of experiment** The present experiment was conducted in three seasons namely S_1 - hot dry (15th May -30th June), S_2 - hot humid (1st Sept – 15th Oct) and S_3 - winter (1st Dec – 15th Jan). ## Work rest cycle and Total loads The camels worked for 6 hrs daily from morning 08.00 hrs to 16.00 hrs in two work rest cycles viz. WR₁: 2h (W) - 1h (R) + 2h (W) - 1h (R) + 2h (W) - 1h (R) (Singh, 1996) and WR₂: 1h (W) - 15 min (R) - 1h (W) - 15 min (R) - 1h (W) - 15 min (R) - 1h (W) (Traditional) on straight tar road of about 5.2 km/round. Three loads (L₁ - 1500 kg, L₂ - 2000 kg and L₃ - 2500 kg) were placed on the camel cart. The total load was the sum of payload + weight of cart + weight of driver. The bags filled with gravels and concentrate mixture were used to fix the pay loads on the cart. The camel worked with three pay loads in two work rest cycles for six days (two days for each pay load). ### Blood and Biochemical profile Approximately 10ml of blood was collected aseptically in EDTA vaccutainers and 10ml was collected in test tube without using coagulant for serum separation by puncturing the jugular vein of SEND REPRINT REQUEST TO K.N. WADHWANI email: knwadhwani@yahoo.co.in animals daily in the morning before the start of the work and at the end of the work in the evening. The plasma samples were separated from whole blood by centrifugation at 3000 rpm for 15 minutes, and stored at -20°C for estimation of the blood profile like glucose (mg/dl), urea (mg/dl), uric acid (mg/dl), creatinine (mg/dl), Hb (g%) and PCV (%). # Statistical analysis The data were presented as mean \pm standard error (SE). All means and SE were estimated as per the procedure outlined in SPSS® 11.00 statistical packages (2001). The level of significance was set at 95% confidence interval at P < 0.05. The significance between means and their combined interaction effect of different treatment effect were assessed using the multi-factorial completely randomised design (CRD) procedures (Snedecor and Cochran, 1980). #### **Results and Discussion** The glucose level was significantly (p < 0.05) lower during S₁ as compared to S₂ and S₃ which was at par in both the work rest cycles (Table 1). The per cent rise in blood glucose level was observed to be 19.17 and 10.22 and 16.85 and 12.40 during S₂ and S₃ season in WR₁ and WR₂, respectively as compared to S₁. The per cent reduction in glucose level at the end of work was 18.06 and 20.81 in S₁ in WR₁ and WR₂. The corresponding values during S₂ and S₃ season were 14.46 and 21.08 and 16.85 and 16.51, respectively. The blood glucose level was significantly (p < 0.05) affected by season and session of work but there was no effect of payload and work rest cycle inter actions. There was marked significant (p < 0.05) reduction in blood glucose level at the end of work in all seasons of both the work rest cycles except S₂ season in WR₁. Table 1. Effect of Work Rest Cycles on glucose (mg/dl) of Kachchhi camel. | | | | | | | Sea | son | | | | | | Mean | | |--------------|-----------------------------|-----------------------------|------------------------------|--|------------------------------|------------------------------|------------------------------|-----------------------------|------------------------------|-----------------------------|------------------------------|-----------------------------|-----------------|-----------------| | D I 1 | | Sun | nmer | | | Hot - l | Humid | | | Wi | | | | | | Pay Load | W | R_1 | WR ₂ | | WR ₁ | | WR ₂ | | \overline{WR}_1 | | WR ₂ | | WR_1 | WR ₂ | | | BW | AW |] | | | L_1 | 97.20
±7.07 | 87.80
±5.06 | 103.00
±6.36 | 89.00
±6.98 | 104.40
±2.44 | 93.60
±5.94 | 102.40
±2.11 | 85.40
±5.77 | 104.80
±2.08 | 99.60
±8.58 | 111.20
±4.71 | 98.80
±7.74 | 97.90
±2.39 | 101.63
±2.98 | | L_2 | 99.80
±4.66 | 80.20
±5.73 | 94.60
±5.90 | 77.80
±5.91 | 111.00
±8.31 | 89.60
±6.38 | 110.60
±3.21 | 85.20
±4.98 | 120.60
±6.89 | 94.00
±3.44 | 106.80
±3.89 | 92.60
±5.01 | 102.53
±3.32 | 94.60
±3.07 | | L_3 | 97.20
±4.73 | 73.00
±5.13 | 108.20
±3.98 | 71.80
±4.23 | 106.60
±3.61 | 92.60
±3.79 | 111.40
±2.34 | 85.00
±3.88 | 102.60
±8.74 | 93.80
±9.87 | 115.60
±2.98 | 86.60
±3.00 | 99.30
±4.12 | 96.43
±4.14 | | Mean
(Se) | 98.06
±3.67 ^B | 80.33
±5.12 ^A | 101.93
±4.68 ^B | 79.53 ^A
±6.23 ^A | 107.33
±4.68 ^A | 105.26
±3.71 ^A | 108.13
±3.98 ^B | 91.86
±3.12 ^A | 112.66
±5.31 ^B | 95.80
±3.55 ^A | 111.20
±5.00 ^B | 92.66
±3.01 ^A | | | | Mean (S) | 89.20±2.73 ^a | | 90.73: | ±3.30 ^a | 106.30 | ±3.19 ^b | 100± | 3.10 ^b | 104.23 | ±3.23 ^b | 101.93 | 3±3.63 ^b | | | Season Mean with different superscripts (a, b) in row differ at p < 0.05 Work sessions mean with different superscripts (A,B) in row differ at P<0.05 Abbreviations used: Work Rest Cycle 1 (WR₁), Work Rest Cycle 2 (WR₂), Before work (BW), After work (AW) Table 2. Effect of Work Rest Cycles on urea (mg/dl) of Kachchhi camel. | | | | | | | Sea | son | | | | | | Me | an | |--------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------| | Day I and | | Sun | ımer | | | Hot - I | Humid | | | Wir | nter | | | | | Pay Load | W | R_1 | WR ₂ | | WR ₁ | | WR ₂ | | WR ₁ | | WR ₂ | | WR_1 | WR ₂ | | | BW | AW | | | | L_1 | 55.29
±4.03 | 65.30
±8.01 | 52.83
±2.35 | 60.43
±4.98 | 32.85
±8.40 | 39.09
±7.31 | 59.11
±3.39 | 61.21
±2.78 | 46.70
±4.61 | 47.56
±3.81 | 48.72
±3.76 | 50.19
±2.99 | 47.80
±3.05 ^a | 49.37
±2.18 ^a | | L_2 | 49.86
±1.52 | 57.53
±3.23 | 54.91
±3.46 | 58.75
±4.69 | 44.47
±6.92 | 47.72
±4.93 | 40.50
±6.44 | 43.58
±7.09 | 49.29
±3.11 | 52.40
±1.93 | 48.73
±2.07 | 52.98
±3.34 | 50.21
±1.68 ^a | 53.45
±1.65 ^b | | L_3 | 55.47
±5.27 | 64.59
±4.30 | 63.11
±6.46 | 66.37
±5.44 | 54.11
±2.24 | 56.17
±3.91 | 50.87
±5.22 | 54.49
±5.18 | 51.32
±5.04 | 52.41
±4.53 | 47.16
±3.79 | 52.26
±6.45 | 55.84
±1.78 ^b | 58.87
±2.16° | | Mean
(Se) | 53.54
±2.21 ^A | 62.47
±3.12 ^B | 56.95
±2.66 ^A | 61.85
±2.85 ^B | 43.81
±4.14 ^A | 47.66
±3.51 ^B | 50.16
±3.43 ^A | 53.09
±3.44 ^A | 49.10
±2.54 ^A | 51.12
±2.00 ^A | 48.69
±1.65 ^A | 52.65
±2.66 ^A | | | | Mean (S) | 58.01±2.06 ^c 59. | | 59.40 | | | ±2.69ª | 51.63 | ±2.40 ^a | 50.11: | ±1.53 ^b | 50.67 | ±1.58ª | | | Season Mean with different superscripts (a, b) in row differ at p < 0.05 Load Mean with different superscripts (a, b, c) in coloum differ at p < 0.05 Work sessions mean with different superscripts (A,B) in row differ at P<0.05 Abbreviations used: Work Rest Cycle 1 (WR₁), Work Rest Cycle 2 (WR₂), Before work (BW), After work (AW) Table 3. Effect of Work Rest Cycle -1 (WR₁) and 2 (WR₂) on uric acid (mg/dl) of Kachchhi camel. | | | | | | | Sea | son | | | | | | Ме | ean | |----------|-----------------|----------------|-----------------|----------------|-----------------|----------------|-----------------|----------------|-----------------|----------------|-----------------|----------------|-----------------|-----------------| | D | | Sum | mer | | | Hot - l | Humid | | | Wiı | | | | | | Pay Load | WR ₁ | | WR ₂ | | WR ₁ | | WR ₂ | | WR ₁ | | WR ₂ | | WR ₁ | WR ₂ | | | BW | AW | | | | L_1 | 0.390
±0.08 | 0.378
±0.07 | 0.398
±0.12 | 0.748
±0.53 | 0.388
±0.01 | 0.304
±0.07 | 0.380
±0.09 | 0.416
±0.12 | 0.300
±0.06 | 0.326
±0.08 | 0.358
±0.07 | 0.300
±0.02 | 0.348
±0.03 | 0.433
±0.09 | | L_2 | 0.702
±0.30 | 0.460
±0.19 | 0.098
±0.03 | 0.188
±0.04 | 0.366
±0.09 | 0.382
±0.06 | 0.230
±0.05 | 0.352
±0.09 | 0.210
±0.10 | 0.212
±0.08 | 0.252
±0.08 | 0.242
±0.06 | 0.389
±0.07 | 0.227
±0.03 | | L_3 | 0.244
±0.05 | 0.218
±0.08 | 0.292
±0.11 | 0.250
±0.08 | 0.250
±0.05 | 0.404
±0.05 | 0.414
±0.09 | 0.290
±0.11 | 0.262
±0.14 | 0.230
±0.07 | 0.278
±0.06 | 0.322
±0.15 | 0.268
±0.03 | 0.308
±0.04 | | Mean (S) | 0.399±0.06 | | 0.329 | ±0.09 | 0.349 | ±0.02 | 0.347 | ±0.04 | 0.257 | ±0.04 | 0.292 | ±0.03 | | | Table 4. Effect of Work Rest Cycle -1 (WR₁) and 2 (WR₂) on creatinine (mg/dl) of Kachchhi camel. | | | | | | | Sea | son | | | | | | Me | an | |----------------|----------------|----------------|-----------------|----------------|-----------------|--------------------|-----------------|--------------------|-----------------|----------------|-----------------|----------------|----------------|-----------------| | Day Load | | Sun | nmer | | | Hot - l | Humid | | Winter | | | | | | | Pay Load | W | R_1 | WR ₂ | | WR ₁ | | WR ₂ | | WR ₁ | | WR ₂ | | WR_1 | WR ₂ | | | BW | AW | | | | L_1 | 1.34
±0.24 | 1.43
±0.17 | 1.34
±0.26 | 1.26
±0.20 | 0.86
±0.17 | 1.46
±0.13 | 0.86
±0.15 | 1.14
±0.17 | 1.06
±0.11 | 1.12
±0.12 | 1.14
±0.06 | 1.08
±0.13 | 1.212
±0.07 | 1.217
±0.08 | | L_2 | 1.24
±0.22 | 1.22
±0.34 | 1.10
±0.22 | 1.38
±0.11 | 0.86
±0.16 | 1.28
±0.09 | 1.12
±0.10 | 1.28
±0.06 | 0.88
±0.12 | 1.02
±0.09 | 0.96
±0.11 | 0.72
±0.11 | 1.083
±0.08 | 1.113
±0.07 | | L ₃ | 1.20
±0.08 | 1.30
±0.14 | 0.86
±0.15 | 1.46
±0.10 | 1.00
±0.11 | 1.30
±0.17 | 1.00
±0.17 | 1.48
±0.10 | 0.84
±0.10 | 0.98
±0.18 | 0.80
±0.18 | 1.02
±0.19 | 1.103
±0.06 | 1.130
±0.08 | | Mean
(Se) | 1.261
±0.11 | 1.321
±0.13 | 1.321
±0.15 | 1.401
±0.04 | 0.911
±0.83 | 1.352
±0.07 | 0.991
±0.08 | 1.302
±0.07 | 0.931
±0.07 | 1.042
±0.07 | 0.971
±0.08 | 0.941
±0.09 | | | | Mean (S) | 1.288 | ±0.08° | 1.360: | ±0.09° | 1.127 | ±0.07 ^b | 1.147: | ±0.06 ^b | 0.983 | Ŀ0.05ª | 0.953± | :0.057ª | | | Season Mean with different superscripts (a, b) in row differ at p<0.05 Session mean with different superscripts (1, 2) in row differ at p<0.05 Interaction Mean (S X Se) with different superscripts (A, B) in column differ at p<0.05 Abbreviations used: S= Season, Se= Session of work The present findings are well supported by Bhatia (1986), Mehrotra and Gupta (1989) and Al-Qarawi (1999) where as reported values are lower than the values reported by Yadav and Bissa (1998). However, it is higher than the values reported by Sultan (2003). The urea level was significantly (p < 0.05) higher during S_1 (58.01±2.05) followed by S_3 (50.11 ± 1.53) and S₂ (45.73 ± 2.69) in WR₁ whereas in WR₂, the urea level observed in S_2 (51.63±2.40) and S₃ season (50.67±1.58) was at par but differed significantly (p < 0.05) from the value observed during S_1 (59.40±1.96) (Table 2). The urea level was at par under L₁ and L₂ pay load in WR₁ but differed significantly (p < 0.05) from L₃ pay load whereas, the urea level observed under L_1 , L_2 and L_3 pay load differed significantly (p < 0.05) from each other in WR₂. The per cent rise in urea level was 16.64 and 5.51, 10.03 and 6.17 and 3.42 and 7.51 at the end of work during S₁, S₂ and S₃ season, respectively in WR_1 and WR_2 . The Urea level was significantly (p < 0.05) affected by season, loads, session of work and interaction of Season x Load. There was not much rise in Urea level in WR_2 except in S_3 . The urea level differed significantly (p < 0.05) at the end of work in S_1 season only in both the work rest cycles and remained at par in S_2 and S_3 season. The minimum concentration of uric acid (mg/dl) in Kachchhi camel was observed during S_3 (0.25±0.035) season followed by S_2 (0.34±0.02) and S_1 (0.39±0.06) in WR₁. The corresponding values for WR₂ were 0.29±0.03, 0.34±0.03 and 0.32±0.09 (Table 3). The uric acid concentration in blood of Kachchhi camel were not influenced either by season, work rest cycles, loads, sessions of work and their interaction effects. The Al-Qarawi (1999) reported the values of uric acid (mg/l) in black, brown and white camels during S_3 and S_1 but the values observed under present investigation are quite low than reported by Al-Qarawi (1999). The creatinine levels before the start (1.062 ± 0.11) and at the end of work (1.224 ± 0.337) indicated that it Table 5. Effect of Work Rest Cycle -1 and 2 on Hb (g %) of Kachchhi Camel. | | | | | | | Sea | son | | | | | | Мє | ean | |-----------|-----------------|----------------|-----------------|----------------|-----------------|----------------|-----------------|----------------|----------------|----------------|-----------------|----------------|-----------------------------|-----------------------------| | Day I and | | Sun | nmer | | | Hot - l | Humid | | | Wir | iter | | | | | Pay Load | WR ₁ | | WR ₂ | | WR ₁ | | WR ₂ | | WR_1 | | WR ₂ | | WR_1 | WR ₂ | | | BW | AW | | | | L_1 | 14.00
±0.12 | 13.78
±0.14 | 13.62
±0.17 | 13.26
±0.16 | 12.50
±0.22 | 13.10
±0.10 | 13.00
±0.00 | 13.00
±0.00 | 12.40
±0.24 | 12.80
±0.20 | 13.00
±0.00 | 13.00
±0.00 | 13.09
±0.13 ^b | 13.14
±0.06 ^b | | L_2 | 13.20
±0.48 | 12.80
±0.46 | 13.32
±0.33 | 13.06
±0.29 | 12.40
±0.24 | 13.00
±0.00 | 12.80
±0.20 | 13.00
±0.00 | 12.80
±0.20 | 13.00
±0.00 | 12.60
±0.24 | 12.80
±0.20 | 12.86
±0.12 ^b | 12.93
±0.10 ^a | | L_3 | 12.20
±1.05 | 12.08
±1.02 | 12.00
±1.00 | 11.88
±1.02 | 12.40
±0.24 | 13.00
±0.00 | 13.00
±0.00 | 13.00
±0.00 | 12.60
±0.24 | 12.80
±0.20 | 13.00
±0.00 | 13.00
±0.00 | 12.51
±0.24 ^a | 12.64
±0.24 ^a | | Mean (S) | 13.01±0.28 | | 12.85 | ±0.26 | 12.73 | ±0.09 | 12.96 | ±0.03 | 12.73 | ±0.08 | 12.90 | ±0.06 | | | Load Mean with different superscripts (a, b) in coloum differ at p < 0.05. Table 6. Effect of Work Rest Cycle -1 and 2 on PCV (%) of Kachchhi Camel. | | | | | | | Sea | son | | | | | | Me | ean | |----------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|----------------|-----------------| | Day I and | | Sum | mer | | | Hot - l | Humid | | Winter | | | | | | | Pay Load | W | R_1 | WR ₂ | | WR ₁ | | WR ₂ | | WR ₁ | | WR ₂ | | WR_1 | WR ₂ | | | BW | AW | | | | L_1 | 33.60
±0.51 | 31.40
±0.60 | 32.60
±0.68 | 31.40
±0.68 | 27.80
±0.49 | 27.60
±0.68 | 27.60
±0.68 | 27.60
±0.68 | 27.80
±0.37 | 27.60
±0.40 | 27.80
±0.49 | 28.00
±0.32 | 29.30
±0.48 | 29.16
±0.44 | | L_2 | 33.00
±0.45 | 30.60
±0.24 | 33.40
±0.24 | 31.80
±0.20 | 27.00
±1.05 | 27.80
±0.20 | 28.00
±0.45 | 28.40
±0.40 | 27.80
±0.37 | 28.00
±0.32 | 28.00
±0.32 | 28.00
±0.32 | 29.03
±0.44 | 29.60
±0.42 | | L ₃ | 32.40
±0.48 | 31.20
±0.58 | 31.80
±0.37 | 30.40
±0.24 | 27.60
±0.24 | 27.80
±0.20 | 27.60
±0.24 | 27.80
±0.24 | 27.80
±0.20 | 27.80
±0.20 | 27.80
±0.20 | 27.80
±0.20 | 29.10
±0.38 | 28.80
±0.33 | | Mean
(Se) | 33.00
±0.29 ^B | 31.06
±0.28 ^A | 32.60
±0.31 ^B | 31.20
±0.28 ^A | 27.47
±0.37 ^A | 27.73
±0.23 ^A | 27.73
±0.27 ^A | 27.80
±0.28 ^A | 27.80
±0.17 ^A | 27.80
±0.17 ^A | 27.86
±0.19 ^A | 27.93
±0.15 ^A | | | | Mean (S) | 32.0±0.27 ^b | | 31.90 | ±0.24 ^b | 27.60 | ±0.22 ^a | 27.67 | ±0.19ª | 27.80 | ±0.12 ^a | 27.90: | ±0.12 ^a | | | Season Mean with different superscripts (a, b) in row differ at p < 0.05. Session Mean with different superscripts (A, B) in coloum differs at p < 0.05. increased by 15.25% at the end of work irrespective of seasons, payloads and work rest cycles (Table 4). The creatinine level recorded at the beginning and at the end of work differed significantly (p < 0.05) during S₂ and S₃ in WR₁ whereas it differed only during S₂ in WR₂. Date showed that creatinine level increased only during S₂ after the end of work. Whereas, it remained at par during S_1 and S_3 . The lowest creatinine values observed were during S₃ in both the work rest cycles followed by S₂ and S₁. The creatinine level recorded at the beginning of work and at the end of work differed significantly (p < 0.05) during S_2 and S_3 in WR₁ whereas it differed only during S₂ in WR₂. When S X Se interaction showed that creatinine level increased only during S₂ after the end of work. Whereas it remained at par during S₁ and S₃. The Al-Qarawi (1999) reported the values of creatinine (mg/l) in black, brown and white camel during S₃ and S₁ are quite similar to the values reported by Al-Qarawi (1999). The Hb (g%) of camel reduced significantly (p < 0.05) when worked under L₃ as compared to L₂ in WR_1 where as Hb (g%) did not decrease significantly when animal worked either under L_2 or L_3 pay load in WR_2 (Table 5). The Hb (g%) did not influence by season, work rest cycles and sessions of work but significantly (p < 0.05) influenced by loads and its interaction with season. The PCV (%) was observed to be maximum during S_1 in both work rest cycles which dropped down significantly (p < 0.05) by 13.83 and 13.26 % when camel worked in S_2 in WR₁ and WR₂, respectively (Table 6). The PCV (%) did not influence either by work rest cycle or payload but was significantly (P < 0.05) influenced by seasons and sessions of work. The PCV (%) under L_1 and L_3 in WR₁ and WR₂ remained at par but declined significantly (p< 0.05) under L_2 in WR₁ as compared to WR₂. #### Reference Aderemi FA (2004). Effect of replacement of wheat bran with cassava root sieviate supplemented or unsupplemented with enzyme on the haematology and serum biochemistry of pullet chicks. Tropical Journal of Animal Science 7:147-153 - Al-Qarawi AA (1999). The chronobiological blood parameter changes as correlated to different traits of *Camelus dromedarius* in Saudi Arabia. Journal of Camel Practice and Research 6(1):45-48. - Bhatia JS (1986). Special aspects of physiology of digestion in camel. Farm Animals 1:15-20 - ICAR (1985). Nutrient Requirements of Livestock and Poultry. 1st Edition, ICAR, New Delhi. pp 8. - Jain NC (1998). Essential of Veterinary Haematology. 2nd Ed. Lea & Febiger; Philadelphia (USA). pp 65-68. - Kataria N, Kataria AK, Agrawal VK, Garg SL, Sahani MS and Singh R (2000). Effect of water restriction on serum aldosterone and cortisol in dromedary camel during winter and summer. Journal of Camel Practice and Research 7(1):1-7. - Mehrotra V and Gupta ML (1989). Seasonal variation in certain blood constituents in camel. Indian Journal of Animal Sciences 59:1559-1561. - Singh G (1996). Agricultural machinery for sustainable economy. R N Tagore Memorial Lecture, Xth National Convention of Agricultural Engineers, the Institution of Engineers (India), held at Central Institute of Agricultural Engineering, Bhopal. pp 10-11. - Snedecor GW and Cochran WG (1980). Statistical Methods. $7^{\rm th}$ Edn. The Iowa state University Press, Ames, Iowa, USA. - SPSS (2001). SPSS® User's Guide: Release 11.00 Edn. SPSS Inc., USA. - Sultan A (2003). Studies od some normal biochemical parameter of Majaheem breed of camel (*Camelus dromedarius*) in Saudi Arabia. Journal of Camel Practice and Research 10(1):79-80. - Yadav and Bissa (1998). Studied the factor affecting some blood constituents in Camels – A review. Proceedings of the Third Annual Meeting for Animal Production Under Arid Conditions 2:32-48.